14. S. Dey, A. Chakravarty, P. Guha Biswas, R.N. De Guzman, “The type III secretion system
needle, tip, and translocon,” Protein Science, p. pro.3682, vol. 28, 2019, pp. 1582–1593.
15. E. Grohmann, P.J. Christie, G. Waksman, S. Backert, “Type IV secretion in gram-negative
and gram-positive bacteria: Type IV secretion,” Molecular Microbiology, vol. 107, no. 4, 2018,
pp. 455–471.
16. R. Fronzes, P.J. Christie, G. Waksman, “The structural biology of type IV secretion systems,”
Nat Rev Microbiol, vol. 7, no. 10, 2009, pp. 703–714.
17. K. Wallden, A. Rivera-Calzada, G. Waksman, “Microreview: Type IV secretion systems:
Versatility and diversity in function,” Cellular Microbiology, vol. 12, no. 9, 2010, pp. 1203–1212.
18. D.E. Bradley, “Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili,”
Biochemical and Biophysical Research Communications, vol. 47, no. 1, 1972, pp. 142–149.
19. K. Ligthart, C. Belzer, W.M. de Vos, H.L.P. Tytgat, “Bridging bacteria and the gut: Functional
aspects of type IV pili,” Trends in Microbiology, vol. 28, no. 5, 2020, pp. 340–348.
20. D.G. Thanassi, S.P. Nuccio, S.S.K. So, A.J. Bäumler, “Fimbriae: Classification and biochem
istry,” EcoSal Plus, vol. 2, no. 2, 2007, p. ecosalplus.2.4.2.1.
21. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, “Extracellular
electron transfer via microbial nanowires,” Nature, vol. 435, no. 7045, 2005, pp. 1098–1101.
22. J.S. Mattick, “Type IV pili and twitching motility,” Annu. Rev. Microbiol., vol. 56, no. 1, 2002,
pp. 289–314.
23. N.S. Malvankar, D.R. Lovley, “Microbial nanowires for bioenergy applications,” Current
Opinion in Biotechnology, vol. 27, 2014, pp. 88–95.
24. N.S. Malvankar, D.R. Lovley, “Microbial nanowires: A new paradigm for biological electron
transfer and bioelectronics,” Chem Sus Chem, vol. 5, no. 6, 2012, pp. 1039–1046.
25. A. Ilshadsabah, T.V. Suchithra, “Bacterial nanowires: An Invigorating tale for future,” in
Microbial Nanobionics, R. Prasad, Ed., 2019, Cham: Springer International Publishing, pp. 77–88.
26. M.J. Marshall, A.S. Beliaev, A.C. Dohnalkova, D.W. Kennedy, L. Shi, Z. Wang, M.I. Boyanov,
B. Lai, K.M. Kemner, J.S. McLean, S.B. Reed, D.E. Culley, V.L. Bailey, C.J. Simonson, D.A.
Saffarini, M.F. Romine, J.M. Zachara, J.K. Fredrickson, “c-type cytochrome-dependent for
mation of U(IV) nanoparticles by Shewanella oneidensis,” PLoS Biol, vol. 4, no. 8, 2006, p. e268.
27. T. Li, J.T. Guthrie, “Colour removal from aqueous solutions of metal-complex azo dyes using
bacterial cells of Shewanella strain J18 143,” Bioresource Technology, vol. 101, no. 12, 2010,
pp. 4291–4295.
28. D.R. Lovley, E.E. Roden, E.J.P. Phillips, J.C. Woodward, “Enzymatic iron and uranium re
duction by sulfate-reducing bacteria,” Marine Geology, vol. 113, no. 1–2, 1993, pp. 41–53.
29. E.P. Ivanova, S. Flavier, R. Christen, “Phylogenetic relationships among marine
Alteromonas-like proteobacteria: Emended description of the family Alteromonadaceae and
proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae
fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov.
and Psychromonadaceae fam. nov.,” International Journal of Systematic and Evolutionary
Microbiology, vol. 54, no. 5, 2004, pp. 1773–1788.
30. H.A. Derby, “Bacteriology of butter. IV. bacteriological studies on surface taint butter,” Iowa
Agr Expt Sta Research Bull, vol. 6, 1931, p. 145.
31. H.M. Holt, B. Gahrn-Hansen, B. Bruun, “Shewanella algae and Shewanella putrefaciens: Clinical
and microbiological characteristics,” Clinical Microbiology and Infection, vol. 11, no. 5, 2005,
pp. 347–352.
32. P. Subramanian, S. Pirbadian, M.Y. El-Naggar, G.J. Jensen, “Ultrastructure of Shewanella
oneidensis MR-1 nanowires revealed by electron cryotomography,” Proc Natl Acad Sci USA,
vol. 115, no. 14, 2018, pp. E3246–E3255.
33. S. Pirbadian, S.F. Barchinger, K.M. Leung, H.S. Byun, Y. Jangir, R.A. Bouhenni, S.B. Reed, M.F.
Romine, D.A. Saffarini, L. Shi, Y.A. Gorby, J.H. Golbeck, M.Y. El-Naggar MY. “Shewanella
oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular
electron transport components,” Proceedings of the National Academy of Sciences, vol. 111, no. 35,
2014, pp. 12883–12888.
184
Bioelectronics